296 research outputs found

    PuMer: Pruning and Merging Tokens for Efficient Vision Language Models

    Full text link
    Large-scale vision language (VL) models use Transformers to perform cross-modal interactions between the input text and image. These cross-modal interactions are computationally expensive and memory-intensive due to the quadratic complexity of processing the input image and text. We present PuMer: a token reduction framework that uses text-informed Pruning and modality-aware Merging strategies to progressively reduce the tokens of input image and text, improving model inference speed and reducing memory footprint. PuMer learns to keep salient image tokens related to the input text and merges similar textual and visual tokens by adding lightweight token reducer modules at several cross-modal layers in the VL model. Training PuMer is mostly the same as finetuning the original VL model but faster. Our evaluation for two vision language models on four downstream VL tasks shows PuMer increases inference throughput by up to 2x and reduces memory footprint by over 50% while incurring less than a 1% accuracy drop.Comment: Accepted to ACL 2023 Main Conferenc

    Robust Sum-Rate Maximization in Transmissive RMS Transceiver-Enabled SWIPT Networks

    Full text link
    In this paper, we propose a state-of-the-art downlink communication transceiver design for transmissive reconfigurable metasurface (RMS)-enabled simultaneous wireless information and power transfer (SWIPT) networks. Specifically, a feed antenna is deployed in the transmissive RMS-based transceiver, which can be used to implement beamforming. According to the relationship between wavelength and propagation distance, the spatial propagation models of plane and spherical waves are built. Then, in the case of imperfect channel state information (CSI), we formulate a robust system sum-rate maximization problem that jointly optimizes RMS transmissive coefficient, transmit power allocation, and power splitting ratio design while taking account of the non-linear energy harvesting model and outage probability criterion. Since the coupling of optimization variables, the whole optimization problem is non-convex and cannot be solved directly. Therefore, the alternating optimization (AO) framework is implemented to decompose the non-convex original problem. In detail, the whole problem is divided into three sub-problems to solve. For the non-convexity of the objective function, successive convex approximation (SCA) is used to transform it, and penalty function method and difference-of-convex (DC) programming are applied to deal with the non-convex constraints. Finally, we alternately solve the three sub-problems until the entire optimization problem converges. Numerical results show that our proposed algorithm has convergence and better performance than other benchmark algorithms
    • …
    corecore